
Using flex
A Fast Lexical Analyzer Generator

26 May 1990—Version 2.3

This product includes software developed by the University of California, Berke-
ley and its contributors.

Vern Paxson

Using flex
Revision: 1.5

TEXinfo 2021-02-20.11
Original text: vern@ee.lbl.gov

Texinfo conversion:pesch@cygnus.com

Copyright (c) 1990 The Regents of the University of California. All rights reserved.

This code is derived from software contributed to Berkeley by Vern Paxson.

The United States Government has rights in this work pursuant to contract no. DE-
AC03-76SF00098 between the United States Department of Energy and the University of
California.

Redistribution and use in source and binary forms are permitted provided that: (1) source
distributions retain this entire copyright notice and comment, and (2) distributions including
binaries display the following acknowledgement: “This product includes software developed
by the University of California, Berkeley and its contributors” in the documentation or
other materials provided with the distribution and in all advertising materials mentioning
features or use of this software. Neither the name of the University nor the names of its
contributors may be used to endorse or promote products derived from this software without
specific prior written permission.

THIS SOFTWARE IS PROVIDED “AS IS” AND WITHOUT ANY EXPRESS OR IM-
PLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WAR-
RANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

1

1 An Overview of flex, with Examples

flex is a tool for generating scanners: programs which recognize lexical patterns in text.
flex reads the given input files (or its standard input if no file names are given) for a
description of the scanner to generate. The description is in the form of pairs of regular
expressions and C code, called rules. flex generates as output a C source file, lex.yy.c,
which defines a routine yylex. Compile and link this file with the ‘-lfl’ library to produce
an executable. When the executable runs, it analyzes its input for occurrences of the regular
expressions. Whenever it finds one, it executes the corresponding C code.

Some simple examples follow, to give you the flavor of using flex.

1.1 Text-Substitution Scanner

The following flex input specifies a scanner which, whenever it encounters the string
‘username’, will replace it with the user’s login name:

%%

username printf("%s", getlogin());

By default, any text not matched by a flex scanner is copied to the output, so the net
effect of this scanner is to copy its input file to its output with each occurrence of ‘username’
expanded. In this input, there is just one rule. ‘username’ is the pattern and the printf is
the action. The ‘%%’ marks the beginning of the rules.

1.2 A Scanner to Count Lines and Characters

Here’s another simple example:

int num_lines = 0, num_chars = 0;

%%

\n ++num_lines; ++num_chars;

. ++num_chars;

%%

main()

{

yylex();

printf("# of lines = %d, # of chars = %d\n",

num_lines, num_chars);

}

This scanner counts the number of characters and the number of lines in its input (it
produces no output other than the final report on the counts). The first line declares two
globals, num_lines and num_chars, which are accessible both inside yylex and in the main
routine declared after the second ‘%%’. There are two rules, one which matches a newline
(‘\n’) and increments both the line count and the character count, and one which matches
any character other than a newline (indicated by the ‘.’ regular expression).

2 Using flex

1.3 Simplified Pascal-like Language Scanner

A somewhat more complicated example:
/* scanner for a toy Pascal-like language */

%{

/* need this for the call to atof() below */

#include <math.h>

%}

DIGIT [0-9]

ID [a-z][a-z0-9]*

%%

{DIGIT}+ {

printf("An integer: %s (%d)\n", yytext,

atoi(yytext));

}

{DIGIT}+"."{DIGIT}* {

printf("A float: %s (%g)\n", yytext,

atof(yytext));

}

if|then|begin|end|procedure|function {

printf("A keyword: %s\n", yytext);

}

{ID} printf("An identifier: %s\n", yytext);

"+"|"-"|"*"|"/" printf("An operator: %s\n", yytext);

"{"[^}\n]*"}" /* eat up one-line comments */

[\t\n]+ /* eat up whitespace */

. printf("Unrecognized character: %s\n", yytext);

%%

main(argc, argv)

int argc;

char **argv;

{

++argv, --argc; /* skip over program name */

if (argc > 0)

yyin = fopen(argv[0], "r");

else

yyin = stdin;

yylex();

}

This is the beginnings of a simple scanner for a language like Pascal. It identifies different
types of tokens and reports on what it has seen.

The details of this example are explained in the following chapters.

3

2 Input and Output Files

flex’s actions are specified by definitions (which may include embedded C code) in one
or more input files. The primary output file is lex.yy.c. You can also use some of the
command-line options to get diagnostic output (see Chapter 3 [Command-line options],
page 17). This chapter gives the details of how to structure your input to define the
scanner you need.

2.1 Format of the Input File

The flex input file consists of three sections, separated by a line with just ‘%%’ in it:

definitions

%%

rules

%%

user code

The definitions section contains declarations of simple name definitions to simplify the
scanner specification, and declarations of start conditions, which are explained in a later
section.

Name definitions have the form:

name definition

The name is a word beginning with a letter or an underscore (‘_’) followed by zero or more
letters, digits, ‘_’, or ‘-’ (dash). The definition is taken to begin at the first non-whitespace
character following the name, and continuing to the end of the line. The definition can
subsequently be referred to using ‘{name}’, which will expand to ‘(definition)’. For
example,

DIGIT [0-9]

ID [a-z][a-z0-9]*

defines ‘DIGIT’ to be a regular expression which matches a single digit, and ‘ID’ to be
a regular expression which matches a letter followed by zero or more letters or digits. A
subsequent reference to

{DIGIT}+"."{DIGIT}*

is identical to

([0-9])+"."([0-9])*

and matches one or more digits followed by a ‘.’ followed by zero or more digits.

The rules section of the flex input contains a series of rules of the form:

pattern action

where the pattern must be unindented and the action must begin on the same line.

See below for a further description of patterns and actions.

Finally, the user code section is simply copied to lex.yy.c verbatim. It is used for
companion routines which call or are called by the scanner. The presence of this section is
optional; if it is missing, the second ‘%%’ in the input file may be skipped, too.

4 Using flex

In the definitions and rules sections, any indented text or text enclosed in ‘%{’ and ‘%}’ is
copied verbatim to the output (with the ‘%{}’ removed). The ‘%{}’ must appear unindented
on lines by themselves.

In the rules section, any indented or ‘%{}’ text appearing before the first rule may be
used to declare variables which are local to the scanning routine and (after the declarations)
code which is to be executed whenever the scanning routine is entered. Other indented or
‘%{}’ text in the rule section is still copied to the output, but its meaning is not well defined
and it may well cause compile-time errors (this feature is present for posix compliance; see
below for other such features).

In the definitions section, an unindented comment (i.e., a line beginning with ‘/*’) is
also copied verbatim to the output up to the next ‘*/’. Also, any line in the definitions
section beginning with ‘#’ is ignored, though this style of comment is deprecated and may
go away in the future.

2.1.1 Patterns in the Input

The patterns in the input are written using an extended set of regular expressions. These
are:

x match the character ‘x’

. any character except newline

[xyz] a “character class”; in this case, the pattern matches either an ‘x’, a ‘y’, or a
‘z’

[abj-oZ] a “character class” with a range in it; matches an ‘a’, a ‘b’, any letter from ‘j’
through ‘o’, or a ‘Z’

[^A-Z] a “negated character class”, i.e., any character but those in the class. In this
case, any character except an uppercase letter.

[^A-Z\n] any character except an uppercase letter or a newline

r* zero or more r’s, where r is any regular expression

r+ one or more r’s

r? zero or one r’s (that is, ‘‘an optional r’’)

r{2,5} anywhere from two to five r’s

r{2,} two or more r’s

r{4} exactly 4 r’s

{name} the expansion of the name definition (see above)

"[xyz]\"foo"

the literal string: ‘[xyz]"foo’

\X if X is an ‘a’, ‘b’, ‘f’, ‘n’, ‘r’, ‘t’, or ‘v’, then the ansi C interpretation of ‘\X’.
Otherwise, a literal ‘X’ (used to escape operators such as ‘*’)

\123 the character with octal value 123

\x2a the character with hexadecimal value 2a

Chapter 2: Input and Output Files 5

(r) match an r; parentheses are used to override precedence (see below)

rs the regular expression r followed by the regular expression s; called “concate-
nation”

r|s either an r or an s

r/s an r but only if it is followed by an s. The s is not part of the matched text.
This type of pattern is called trailing context.

^r an r, but only at the beginning of a line

r$ an r, but only at the end of a line. Equivalent to ‘r/\n’.

<s>r an r, but only in start condition s (see below for discussion of start conditions)

<s1,s2,s3>r

same, but in any of start conditions s1, s2, or s3

<<EOF>> an end-of-file

<s1,s2><<EOF>>

an end-of-file when in start condition s1 or s2

The regular expressions listed above are grouped according to precedence, from high-
est precedence at the top to lowest at the bottom. Those grouped together have equal
precedence. For example,

foo|bar*

is the same as

(foo)|(ba(r*))

since the ‘*’ operator has higher precedence than concatenation, and concatenation higher
than alternation (‘|’). This pattern therefore matches either the string ‘foo’ or the string
‘ba’ followed by zero or more instances of ‘r’. To match ‘foo’ or zero or more instances of
‘bar’, use:

foo|(bar)*

and to match zero or more instances of either ‘foo’ or ‘bar’:

(foo|bar)*

Some notes on patterns:

• A negated character class such as the example ‘[^A-Z]’ above will match a newline
unless ‘\n’ (or an equivalent escape sequence) is one of the characters explicitly present
in the negated character class (e.g., ‘[^A-Z\n]’). This is unlike how many other regular
expression tools treat negated character classes, but unfortunately the inconsistency is
historically entrenched. Matching newlines means that a pattern like ‘[^"]*’ can match
an entire input (overflowing the scanner’s input buffer) unless there’s another quote in
the input.

• A rule can have at most one instance of trailing context (the ‘/’ operator or the ‘$’
operator). The start condition, ‘^’, and ‘<<EOF>>’ patterns can only occur at the
beginning of a pattern, and, as well as with ‘/’ and ‘$’, cannot be grouped inside
parentheses. A ‘^’ which does not occur at the beginning of a rule or a ‘$’ which does
not occur at the end of a rule loses its special properties and is treated as a normal
character.

6 Using flex

The following are illegal:

foo/bar$

<sc1>foo<sc2>bar

You can write the first of these instead as ‘foo/bar\n’.

In the following examples, ‘$’ and ‘^’ are treated as normal characters:

foo|(bar$)

foo|^bar

If what you want to specify is “either ‘foo’, or ‘bar’ followed by a newline” you can use
the following (the special ‘|’ action is explained below):

foo |

bar$ /* action goes here */

A similar trick will work for matching “either ‘foo’, or ‘bar’ at the beginning of a line.”

2.1.2 How the Input is Matched

When the generated scanner runs, it analyzes its input looking for strings which match any
of its patterns. If it finds more than one match, it takes the one matching the most text
(for trailing context rules, this includes the length of the trailing part, even though it will
then be returned to the input). If it finds two or more matches of the same length, the rule
listed first in the flex input file is chosen.

Once the match is determined, the text corresponding to the match (called the token) is
made available in the global character pointer yytext, and its length in the global integer
yyleng. The action corresponding to the matched pattern is then executed (a more detailed
description of actions follows), and then the remaining input is scanned for another match.

If no match is found, then the default rule is executed: the next character in the input
is considered matched and copied to the standard output. Thus, the simplest legal flex
input is:

%%

which generates a scanner that simply copies its input (one character at a time) to its
output.

2.1.3 Actions

Each pattern in a rule has a corresponding action, which can be any arbitrary C statement.
The pattern ends at the first non-escaped whitespace character; the remainder of the line
is its action. If the action is empty, then when the pattern is matched the input token is
simply discarded. For example, here is the specification for a program which deletes all
occurrences of ‘zap me’ from its input:

%%

"zap me"

(It will copy all other characters in the input to the output since they will be matched by
the default rule.)

Here is a program which compresses multiple blanks and tabs down to a single blank,
and throws away whitespace found at the end of a line:

%%

Chapter 2: Input and Output Files 7

[\t]+ putchar(’ ’);

[\t]+$ /* ignore this token */

If the action contains a ‘{’, then the action spans till the balancing ‘}’ is found, and
the action may cross multiple lines. flex knows about C strings and comments and won’t
be fooled by braces found within them, but also allows actions to begin with ‘%{’ and will
consider the action to be all the text up to the next ‘%}’ (regardless of ordinary braces inside
the action).

An action consisting solely of a vertical bar (‘|’) means “same as the action for the next
rule.” See below for an illustration.

Actions can include arbitrary C code, including return statements to return a value to
whatever routine called yylex. Each time yylex is called it continues processing tokens
from where it last left off until it either reaches the end of the file or executes a return. Once
it reaches an end-of-file, however, then any subsequent call to yylex will simply immediately
return, unless yyrestart is first called (see below).

Actions are not allowed to modify ‘yytext’ or ‘yyleng’.

There are a number of special directives which can be included within an action:

ECHO copies yytext to the scanner’s output.

BEGIN followed by the name of a start condition places the scanner in the corresponding
start condition (see below).

REJECT directs the scanner to proceed on to the “second best” rule which matched
the input (or a prefix of the input). The rule is chosen as described above
in Section 2.1.2 [How the Input is Matched], page 6, and yytext and yyleng

set up appropriately. It may either be one which matched as much text as
the originally chosen rule but came later in the flex input file, or one which
matched less text. For example, the following will both count the words in the
input and call the routine special whenever ‘frob’ is seen:

int word_count = 0;

%%

frob special(); REJECT;

[^ \t\n]+ ++word_count;

Without the REJECT, any ‘frob’ in the input would not be counted as a word,
since the scanner normally executes only one action per token. Multiple REJECT
actions are allowed, each one finding the next best choice to the currently active
rule. For example, when the following scanner scans the token ‘abcd’, it will
write ‘abcdabcaba’ to the output:

%%

a |

ab |

abc |

abcd ECHO; REJECT;

.|\n /* eat up any unmatched character */

(The first three rules share the fourth’s action, since they use the special ‘|’
action.) REJECT is a particularly expensive feature in terms of scanner perfor-

8 Using flex

mance; if it is used in any of the scanner’s actions, it will slow down all of the
scanner’s matching. Furthermore, REJECT cannot be used with the ‘-f’ or ‘-F’
options (see below).

Note also that unlike the other special actions, REJECT is a branch; code imme-
diately following it in the action will not be executed.

yymore() tells the scanner that the next time it matches a rule, the corresponding to-
ken should be appended onto the current value of yytext rather than replac-
ing it. For example, given the input ‘mega-kludge’ the following will write
‘mega-mega-kludge’ to the output:

%%

mega- ECHO; yymore();

kludge ECHO;

First ‘mega-’ is matched and echoed to the output. Then ‘kludge’ is matched,
but the previous ‘mega-’ is still hanging around at the beginning of yytext so the
ECHO for the ‘kludge’ rule will actually write ‘mega-kludge’. The presence
of yymore in the scanner’s action entails a minor performance penalty in the
scanner’s matching speed.

yyless(n)

returns all but the first n characters of the current token back to the input
stream, where they will be rescanned when the scanner looks for the next
match. yytext and yyleng are adjusted appropriately (e.g., yyleng will now
be equal to n). For example, on the input ‘foobar’ the following will write out
‘foobarbar’:

%%

foobar ECHO; yyless(3);

[a-z]+ ECHO;

‘yyless(0)’ will cause the entire current input string to be scanned again. Un-
less you’ve changed how the scanner will subsequently process its input (using
BEGIN, for example), this will result in an endless loop.

unput(c) puts the character c back onto the input stream. It will be the next character
scanned. The following action will take the current token and cause it to be
rescanned enclosed in parentheses.

{

int i;

unput(’)’);

for (i = yyleng - 1; i >= 0; --i)

unput(yytext[i]);

unput(’(’);

}

Note that since each unput puts the given character back at the beginning of
the input stream, pushing back strings must be done back-to-front.

input() reads the next character from the input stream. For example, the following is
one way to eat up C comments:

%%

Chapter 2: Input and Output Files 9

"/*" {

register int c;

for (; ;)

{

while ((c = input()) != ’*’ &&

c != EOF)

; /* eat up text of comment */

if (c == ’*’)

{

while ((c = input()) == ’*’)

;

if (c == ’/’)

break; /* found the end */

}

if (c == EOF)

{

error("EOF in comment");

break;

}

}

}

(Note that if the scanner is compiled using C++, then input is instead referred
to as yyinput, in order to avoid a name clash with the C++ stream named
input.)

yyterminate()

can be used in lieu of a return statement in an action. It terminates the
scanner and returns a 0 to the scanner’s caller, indicating ‘all done’. Subse-
quent calls to the scanner will immediately return unless preceded by a call
to yyrestart (see below). By default, yyterminate is also called when an
end-of-file is encountered. It is a macro and may be redefined.

2.2 The Generated Scanner

The output of flex is the file lex.yy.c, which contains the scanning routine yylex, a
number of tables used by it for matching tokens, and a number of auxiliary routines and
macros. By default, yylex is declared as follows:

int yylex()

{

. . . various definitions and the actions in here . . .
}

(If your environment supports function prototypes, then it will be ‘int yylex(void)’.)
This definition may be changed by redefining the YY_DECL macro. For example, you could
use:

#undef YY_DECL

#define YY_DECL float lexscan(a, b) float a, b;

to give the scanning routine the name lexscan, returning a float, and taking two float

values as arguments. Note that if you give arguments to the scanning routine using a

10 Using flex

K&R-style/non-prototyped function declaration, you must terminate the definition with a
semicolon (‘;’).

Whenever yylex is called, it scans tokens from the global input file yyin (which defaults
to stdin). It continues until it either reaches an end-of-file (at which point it returns the
value 0) or one of its actions executes a return statement. In the former case, when called
again the scanner will immediately return unless yyrestart is called to point yyin at the
new input file. (yyrestart takes one argument, a ‘FILE *’ pointer.) In the latter case (i.e.,
when an action executes a return), the scanner may then be called again and it will resume
scanning where it left off.

By default (and for efficiency), the scanner uses block-reads rather than simple getc

calls to read characters from yyin. You can control how it gets input by redefining the
YY_INPUT macro. YY_INPUT’s calling sequence is ‘YY_INPUT(buf,result,max_size)’. Its
action is to place up to max size characters in the character array buf and return in the
integer variable result either the number of characters read or the constant YY_NULL (0 on
Unix systems) to indicate EOF. The default YY_INPUT reads from the global file-pointer
yyin.

A sample redefinition of YY_INPUT (in the definitions section of the input file):

%{

#undef YY_INPUT

#define YY_INPUT(buf,result,max_size) \

{ \

int c = getchar(); \

result = (c == EOF) ? YY_NULL : (buf[0] = c, 1); \

}

%}

This definition will change the input processing to occur one character at a time.

You also can add in things like keeping track of the input line number this way; but
don’t expect your scanner to go very fast.

When the scanner receives an end-of-file indication from YY_INPUT, it then checks the
yywrap function. If yywrap returns false (zero), then it is assumed that the function has
gone ahead and set up yyin to point to another input file, and scanning continues. If it
returns true (non-zero), then the scanner terminates, returning 0 to its caller.

The default yywrap always returns 1. At present, to redefine it you must first ‘#undef
yywrap’, as it is currently implemented as a macro. As indicated by the hedging in the
previous sentence, it may be changed to a true function in the near future.

The scanner writes its ECHO output to the yyout global (default, stdout), which may
be redefined by the user simply by assigning it to some other FILE pointer.

2.3 Start Conditions

flex provides a mechanism for conditionally activating rules. Any rule whose pattern is
prefixed with ‘<sc>’ will only be active when the scanner is in the start condition named
sc. For example,

<STRING>[^"]* { /* eat up the string body ... */

. . .

Chapter 2: Input and Output Files 11

}

will be active only when the scanner is in the ‘STRING’ start condition, and
<INITIAL,STRING,QUOTE>\. { /* handle an escape ... */

. . .
}

will be active only when the current start condition is either ‘INITIAL’, ‘STRING’, or ‘QUOTE’.

Start conditions are declared in the definitions (first) section of the input using unin-
dented lines beginning with either ‘%s’ or ‘%x’ followed by a list of names. The former
declares inclusive start conditions, the latter exclusive start conditions. A start condition
is activated using the BEGIN action. Until the next BEGIN action is executed, rules with the
given start condition will be active and rules with other start conditions will be inactive.
If the start condition is inclusive, then rules with no start conditions at all will also be
active. If it is exclusive, then only rules qualified with the start condition will be active.
A set of rules contingent on the same exclusive start condition describe a scanner which is
independent of any of the other rules in the flex input. Because of this, exclusive start
conditions make it easy to specify “miniscanners” which scan portions of the input that are
syntactically different from the rest (e.g., comments).

If the distinction between inclusive and exclusive start conditions is still a little vague,
here’s a simple example illustrating the connection between the two. The set of rules:

%s example

%%

<example>foo /* do something */

is equivalent to

%x example

%%

<INITIAL,example>foo /* do something */

The default rule (to ECHO any unmatched character) remains active in start conditions.

‘BEGIN(0)’ returns to the original state where only the rules with no start conditions
are active. This state can also be referred to as the start-condition ‘INITIAL’, so
‘BEGIN(INITIAL)’ is equivalent to ‘BEGIN(0)’. (The parentheses around the start condition
name are not required but are considered good style.)

BEGIN actions can also be given as indented code at the beginning of the rules section.
For example, the following will cause the scanner to enter the ‘SPECIAL’ start condition
whenever yylex is called and the global variable enter special is true:

int enter_special;

%x SPECIAL

%%

if (enter_special)

BEGIN(SPECIAL);

<SPECIAL>blahblahblah

. . . more rules follow . . .

To illustrate the uses of start conditions, here is a scanner which provides two different
interpretations of a string like ‘123.456’. By default this scanner will treat the string

12 Using flex

as three tokens: the integer ‘123’, a dot ‘.’, and the integer ‘456’. But if the string is
preceded earlier in the line by the string ‘expect-floats’ it will treat it as a single token,
the floating-point number 123.456:

%{

#include <math.h>

%}

%s expect

%%

expect-floats BEGIN(expect);

<expect>[0-9]+"."[0-9]+ {

printf("found a float, = %f\n",

atof(yytext));

}

<expect>\n {

/* that’s the end of the line, so

* we need another "expect-number"

* before we’ll recognize any more

* numbers

*/

BEGIN(INITIAL);

}

[0-9]+ {

printf("found an integer, = %d\n",

atoi(yytext));

}

"." printf("found a dot\n");

Here is a scanner which recognizes (and discards) C comments while maintaining a count
of the current input line.

%x comment

%%

int line_num = 1;

"/*" BEGIN(comment);

<comment>[^*\n]* /* eat anything that’s not a ’*’ */

<comment>"*"+[^*/\n]* /* eat up ’*’s not followed by ’/’s */

<comment>\n ++line_num;

<comment>"*"+"/" BEGIN(INITIAL);

Note that start-conditions names are really integer values and can be stored as such.
Thus, the above could be extended in the following fashion:

%x comment foo

%%

int line_num = 1;

int comment_caller;

Chapter 2: Input and Output Files 13

"/*" {

comment_caller = INITIAL;

BEGIN(comment);

}

. . .

<foo>"/*" {

comment_caller = foo;

BEGIN(comment);

}

<comment>[^*\n]* /* eat anything that’s not a ’*’ */

<comment>"*"+[^*/\n]* /* eat up ’*’s not followed by ’/’s */

<comment>\n ++line_num;

<comment>"*"+"/" BEGIN(comment_caller);

One can then implement a “stack” of start conditions using an array of integers. (It is
likely that such stacks will become a full-fledged flex feature in the future.) Note, though,
that start conditions do not have their own namespace; ‘%s’ and ‘%x’ declare names in the
same fashion as #define.

2.4 Multiple Input Buffers

Some scanners (such as those which support “include” files) require reading from several
input streams. As flex scanners do a large amount of buffering, one cannot control where
the next input will be read from by simply writing a YY_INPUT which is sensitive to the
scanning context. YY_INPUT is only called when the scanner reaches the end of its buffer,
which may be a long time after scanning a statement such as an “include” which requires
switching the input source.

To negotiate these sorts of problems, flex provides a mechanism for creating and switch-
ing between multiple input buffers. An input buffer is created by using:

YY_BUFFER_STATE yy_create_buffer(FILE *file, int size)

which takes a FILE pointer and a size and creates a buffer associated with the given file
and large enough to hold size characters (when in doubt, use YY_BUF_SIZE for the size). It
returns a YY_BUFFER_STATE handle, which may then be passed to other routines:

void yy_switch_to_buffer(YY_BUFFER_STATE new_buffer)

switches the scanner’s input buffer so subsequent tokens will come from new buffer. Note
that yy_switch_to_buffermay be used by yywrap to sets things up for continued scanning,
instead of opening a new file and pointing yyin at it.

void yy_delete_buffer(YY_BUFFER_STATE buffer)

is used to reclaim the storage associated with a buffer.

yy_new_buffer is an alias for yy_create_buffer, provided for compatibility with the
C++ use of new and delete for creating and destroying dynamic objects.

Finally, the YY_CURRENT_BUFFER macro returns a YY_BUFFER_STATE handle to the cur-
rent buffer.

Here is an example of using these features for writing a scanner which expands include
files (the ‘<<EOF>>’ feature is discussed below):

/* the "incl" state is used for picking up the name

14 Using flex

* of an include file

*/

%x incl

%{

#define MAX_INCLUDE_DEPTH 10

YY_BUFFER_STATE include_stack[MAX_INCLUDE_DEPTH];

int include_stack_ptr = 0;

%}

%%

include BEGIN(incl);

[a-z]+ ECHO;

[^a-z\n]*\n? ECHO;

<incl>[\t]* /* eat the whitespace */

<incl>[^ \t\n]+ { /* got the include file name */

if (include_stack_ptr >= MAX_INCLUDE_DEPTH)

{

fprintf(stderr, "Includes nested too deeply");

exit(1);

}

include_stack[include_stack_ptr++] =

YY_CURRENT_BUFFER;

yyin = fopen(yytext, "r");

if (! yyin)

error(. . .);

yy_switch_to_buffer(

yy_create_buffer(yyin, YY_BUF_SIZE));

BEGIN(INITIAL);

}

<<EOF>> {

if (--include_stack_ptr < 0)

{

yyterminate();

}

else

yy_switch_to_buffer(

include_stack[include_stack_ptr]);

}

2.5 End-of-File Rules

The special rule ‘<<EOF>>’ indicates actions which are to be taken when an end-of-file is
encountered and yywrap returns non-zero (i.e., indicates no further files to process). The
action must finish by doing one of four things:

• the special YY_NEW_FILE action, if yyin has been pointed at a new file to process;

• a return statement;

Chapter 2: Input and Output Files 15

• the special yyterminate action;

• or switching to a new buffer using yy_switch_to_buffer as shown in the example
above.

‘<<EOF>>’ rules may not be used with other patterns; they may only be qualified with
a list of start conditions. If an unqualified ‘<<EOF>>’ rule is given, it applies to all start
conditions which do not already have ‘<<EOF>>’ actions. To specify an ‘<<EOF>>’ rule for
only the initial start condition, use

<INITIAL><<EOF>>

These rules are useful for catching things like unclosed comments. An example:

%x quote

%%

. . . other rules for dealing with quotes . . .

<quote><<EOF>> {

error("unterminated quote");

yyterminate();

}

<<EOF>> {

if (*++filelist)

{

yyin = fopen(*filelist, "r");

YY_NEW_FILE;

}

else

yyterminate();

}

2.6 Miscellaneous Macros

The macro YY_USER_ACTION can be redefined to provide an action which is always executed
prior to the matched rule’s action. For example, it could be #defined to call a routine to
convert yytext to lower-case.

The macro YY_USER_INITmay be redefined to provide an action which is always executed
before the first scan (and before the scanner’s internal initializations are done). For example,
it could be used to call a routine to read in a data table or open a logging file.

In the generated scanner, the actions are all gathered in one large switch statement
and separated using YY_BREAK, which may be redefined. By default, it is simply a break,
to separate each rule’s action from the following rule’s. Redefining YY_BREAK allows, for
example, C++ users to ‘#define YY_BREAK’ to do nothing (while being very careful that
every rule ends with a break or a return!) to avoid suffering from unreachable statement
warnings where because a rule’s action ends with return, the YY_BREAK is inaccessible.

16 Using flex

2.7 Interfacing with Parser Generators

One of the main uses of flex is as a companion to parser generators like yacc. yacc parsers
expect to call a routine named yylex to find the next input token. The routine is supposed
to return the type of the next token as well as putting any associated value in the global
yylval. To use flex with yacc, specify the ‘-d’ option to yacc to instruct it to generate
the file y.tab.h containing definitions of all the %tokens appearing in the yacc input. Then
include this file in the flex scanner. For example, if one of the tokens is ‘TOK_NUMBER’, part
of the scanner might look like:

%{

#include "y.tab.h"

%}

%%

[0-9]+ yylval = atoi(yytext); return TOK_NUMBER;

2.8 Translation Table

In the name of posix compliance, flex supports a translation table for mapping input
characters into groups. The table is specified in the first section, and its format looks like:

%t

1 abcd

2 ABCDEFGHIJKLMNOPQRSTUVWXYZ

52 0123456789

6 \t\ \n

%t

This example specifies that the characters ‘a’, ‘b’, ‘c’, and ‘d’ are to all be lumped into
group #1, upper-case letters in group #2, digits in group #52, tabs, blanks, and newlines
into group #6, and no other characters will appear in the patterns. The group numbers
are actually disregarded by flex; %t serves, though, to lump characters together. Given
the above table, for example, the pattern ‘a(AA)*5’ is equivalent to ‘d(ZQ)*0’. They both
say, “match any character in group #1, followed by zero or more pairs of characters from
group #2, followed by a character from group #52.” Thus ‘%t’ provides a crude way for
introducing equivalence classes into the scanner specification.

Note that the ‘-i’ option (see below) coupled with the equivalence classes which flex

automatically generates take care of virtually all the instances when one might consider
using ‘%t’. But what the hell, it’s there if you want it.

17

3 Command-line Options

You can call flex with the following command-line options:

-b Generate backtracking information to lex.backtrack. This is a list of scanner
states which require backtracking and the input characters on which they do
so. By adding rules one can remove backtracking states. If all backtracking
states are eliminated and ‘-f’ or ‘-F’ is used, the generated scanner will run
faster (see the ‘-p’ flag). Only users who wish to squeeze every last cycle out
of their scanners need worry about this option. (See Chapter 4 [Performance
Considerations], page 21.)

-c is a do-nothing, deprecated option included for posix compliance.

Note: in previous releases of flex, you could use -c to specify table-compression
options. This functionality is now given by the ‘-C’ flag. To ease the the impact
of this change, when flex encounters ‘-c’, it currently issues a warning message
and assumes that ‘-C’ was desired instead. In the future this “promotion” of
‘-c’ to ‘-C’ will go away in the name of full posix compliance (unless the posix
meaning is removed first).

-d makes the generated scanner run in debug mode. Whenever a pattern is rec-
ognized and the global yy_flex_debug is non-zero (which is the default), the
scanner will write to stderr a line of the form:

--accepting rule at line 53 ("the matched text")

The line number refers to the location of the rule in the file defining the scanner
(i.e., the file that was fed to flex). Messages are also generated when the
scanner backtracks, accepts the default rule, reaches the end of its input buffer
(or encounters a NUL; at this point, the two look the same as far as the scanner’s
concerned), or reaches an end-of-file.

-f specifies (take your pick) full table or fast scanner. No table compression is
done. The result is large but fast. This option is equivalent to ‘-Cf’ (see
below).

-i instructs flex to generate a case-insensitive scanner. The case of letters given
in the flex input patterns will be ignored, and tokens in the input will be
matched regardless of case. The matched text given in yytext will have the
preserved case (i.e., it will not be folded).

-n is another do-nothing, deprecated option included only for posix compliance.

-p generates a performance report to stderr. The report consists of comments
regarding features of the flex input file which will cause a loss of performance
in the resulting scanner. Note that the use of REJECT and variable trailing
context (see Chapter 7 [Deficiencies and Bugs], page 33) entails a substantial
performance penalty; use of yymore, the ‘^’ operator, and the ‘-I’ flag entail
minor performance penalties.

-s causes the default rule (that unmatched scanner input is echoed to stdout)
to be suppressed. If the scanner encounters input that does not match any of
its rules, it aborts with an error. This option is useful for finding holes in a
scanner’s rule set.

18 Using flex

-t instructs flex to write the scanner it generates to standard output instead of
lex.yy.c.

-v specifies that flex should write to stderr a summary of statistics regarding
the scanner it generates. Most of the statistics are meaningless to the casual
flex user, but the first line identifies the version of flex, which is useful for
figuring out where you stand with respect to patches and new releases, and the
next two lines give the date when the scanner was created and a summary of
the flags which were in effect.

-F specifies that the fast scanner table representation should be used. This repre-
sentation is about as fast as the full table representation (‘-f’), and for some
sets of patterns will be considerably smaller (and for others, larger). In general,
if the pattern set contains both “keywords” and a catch-all, “identifier” rule,
such as in the set:

"case" return TOK_CASE;

"switch" return TOK_SWITCH;

. . .
"default" return TOK_DEFAULT;

[a-z]+ return TOK_ID;

then you’re better off using the full table representation. If only the “identi-
fier” rule is present and you then use a hash table or some such to detect the
keywords, you’re better off using ‘-F’.

This option is equivalent to ‘-CF’ (see below).

-I instructs flex to generate an interactive scanner. Normally, scanners generated
by flex always look ahead one character before deciding that a rule has been
matched. At the cost of some scanning overhead, flex will generate a scanner
which only looks ahead when needed. Such scanners are called interactive
because if you want to write a scanner for an interactive system such as a
command shell, you will probably want the user’s input to be terminated with
a newline, and without ‘-I’ the user will have to type a character in addition
to the newline in order to have the newline recognized. This leads to dreadful
interactive performance.

If all this seems too confusing, here’s the general rule: if a human will be typing
in input to your scanner, use ‘-I’, otherwise don’t; if you don’t care about
squeezing the utmost performance from your scanner and you don’t want to
make any assumptions about the input to your scanner, use ‘-I’.

Note: ‘-I’ cannot be used in conjunction with full or fast tables, i.e., the ‘-f’,
‘-F’, ‘-Cf’, or ‘-CF’ flags.

-L instructs flex not to generate #line directives. Without this option, flex
peppers the generated scanner with #line directives so error messages in the
actions will be correctly located with respect to the original flex input file,
and not to the fairly meaningless line numbers of lex.yy.c. (Unfortunately
flex does not presently generate the necessary directives to “retarget” the line
numbers for those parts of lex.yy.c which it generated. So if there is an error
in the generated code, a meaningless line number is reported.)

Chapter 3: Command-line Options 19

-T makes flex run in trace mode. It will generate a lot of messages to stdout

concerning the form of the input and the resultant non-deterministic and de-
terministic finite automata. This option is mostly for use in maintaining flex.

-8 instructs flex to generate an 8-bit scanner, i.e., one which can recognize 8-bit
characters. On some sites, flex is installed with this option as the default.
On others, the default is 7-bit characters. To see which is the case, check the
verbose (‘-v’) output for ‘equivalence classes created’. If the denominator
of the number shown is 128, then by default flex is generating 7-bit characters.
If it is 256, then the default is 8-bit characters and the ‘-8’ flag is not required
(but may be a good idea to keep the scanner specification portable). Feeding
a 7-bit scanner 8-bit characters will result in infinite loops, bus errors, or other
such fireworks, so when in doubt, use the flag. Note that if equivalence classes
are used, 8-bit scanners take only slightly more table space than 7-bit scanners
(128 bytes, to be exact); if equivalence classes are not used, however, then the
tables may grow up to twice their 7-bit size.

-C[efmF] controls the degree of table compression.

‘-Ce’ directs flex to construct equivalence classes, i.e., sets of characters which
have identical lexical properties (for example, if the only appearance of digits
in the flex input is in the character class ‘[0-9]’ then the digits ‘0’, ‘1’, . . . ,
‘9’ will all be put in the same equivalence class). Equivalence classes usually
give dramatic reductions in the final table/object file sizes (typically a factor of
2–5) and are pretty cheap performance-wise (one array look-up per character
scanned).

‘-Cf’ specifies that the full scanner tables should be generated; flex will not
compress the tables by taking advantages of similar transition functions for
different states.

‘-CF’ specifies that the alternate fast scanner representation (described above
under the ‘-F’ flag) should be used.

‘-Cm’ directs flex to construct meta-equivalence classes, which are sets of equiv-
alence classes (or characters, if equivalence classes are not being used) that are
commonly used together. Meta-equivalence classes are often a big win when
using compressed tables, but they have a moderate performance impact (one
or two if tests and one array look-up per character scanned).

A lone ‘-C’ specifies that the scanner tables should be compressed, but flex is
not to use either equivalence classes nor meta-equivalence classes.

The options ‘-Cf’ or ‘-CF’ and ‘-Cm’ do not make sense together. There is no op-
portunity for meta-equivalence classes if the table is not compressed. Otherwise
the options may be freely mixed.

The default setting is ‘-Cem’, which specifies that flex should generate equiv-
alence classes and meta-equivalence classes. This setting provides the highest
degree of table compression. You can trade off faster-executing scanners at the
cost of larger tables with the following generally being true:

20 Using flex

slowest and smallest
-Cem

-Cm

-Ce

-C

-C{f,F}e

-C{f,F}

fastest and largest

Note that scanners with the smallest tables are usually generated and compiled
the quickest, so during development you will usually want to use the default,
maximal compression.

‘-Cfe’ is often a good compromise between speed and size for production scan-
ners.

‘-C’ options are not cumulative; whenever the flag is encountered, the previous
‘-C’ settings are forgotten.

-Sskeleton_file

overrides the default skeleton file from which flex constructs its scanners.
You’ll never need this option unless you are doing flex maintenance or de-
velopment.

21

4 Performance Considerations

The main design goal of flex is that it generate high performance scanners. It has been
optimized for dealing well with large sets of rules. Aside from the effects of table compression
on scanner speed outlined above, there are a number of options/actions which degrade
performance. These are, from most expensive to least:

REJECT

pattern sets that require backtracking
arbitrary trailing context

‘^’ beginning-of-line operator
yymore

with the first three all being quite expensive and the last two being quite cheap.

REJECT should be avoided at all costs when performance is important. It is a particularly
expensive option.

Getting rid of backtracking is messy and often may be an enormous amount of work
for a complicated scanner. In principle, one begins by using the ‘-b’ flag to generate a
lex.backtrack file. For example, on the input

%%

foo return TOK_KEYWORD;

foobar return TOK_KEYWORD;

the file looks like:

State #6 is non-accepting -

associated rule line numbers:

2 3

out-transitions: [o]

jam-transitions: EOF [\001-n p-\177]

State #8 is non-accepting -

associated rule line numbers:

3

out-transitions: [a]

jam-transitions: EOF [\001-‘ b-\177]

State #9 is non-accepting -

associated rule line numbers:

3

out-transitions: [r]

jam-transitions: EOF [\001-q s-\177]

Compressed tables always backtrack.

The first few lines tell us that there’s a scanner state in which it can make a transition on
an ‘o’ but not on any other character, and that in that state the currently scanned text does
not match any rule. The state occurs when trying to match the rules found at lines 2 and 3

22 Using flex

in the input file. If the scanner is in that state and then reads something other than an ‘o’,
it will have to backtrack to find a rule which is matched. With a bit of headscratching one
can see that this must be the state it’s in when it has seen ‘fo’. When this has happened,
if anything other than another ‘o’ is seen, the scanner will have to back up to simply match
the ‘f’ (by the default rule).

The comment regarding State #8 indicates there’s a problem when ‘foob’ has been
scanned. Indeed, on any character other than a ‘b’, the scanner will have to back up to
accept ‘foo’. Similarly, the comment for State #9 concerns when ‘fooba’ has been scanned.

The final comment reminds us that there’s no point going to all the trouble of removing
backtracking from the rules unless we’re using ‘-f’ or ‘-F’, since there’s no performance
gain doing so with compressed scanners.

The way to remove the backtracking is to add “error” rules:

%%

foo return TOK_KEYWORD;

foobar return TOK_KEYWORD;

fooba |

foob |

fo {

/* false alarm, not really a keyword */

return TOK_ID;

}

Eliminating backtracking among a list of keywords can also be done using a “catch-all”
rule:

%%

foo return TOK_KEYWORD;

foobar return TOK_KEYWORD;

[a-z]+ return TOK_ID;

This is usually the best solution when appropriate.

Backtracking messages tend to cascade. With a complicated set of rules it’s not uncom-
mon to get hundreds of messages. If one can decipher them, though, it often only takes
a dozen or so rules to eliminate the backtracking (though it’s easy to make a mistake and
have an error rule accidentally match a valid token. A possible future flex feature will be
to automatically add rules to eliminate backtracking).

Variable trailing context (where both the leading and trailing parts do not have a fixed
length) entails almost the same performance loss as REJECT (i.e., substantial). So when
possible a rule like:

%%

mouse|rat/(cat|dog) run();

is better written:

%%

mouse/cat|dog run();

rat/cat|dog run();

Chapter 4: Performance Considerations 23

or as

%%

mouse|rat/cat run();

mouse|rat/dog run();

Note that here the special ‘|’ action does not provide any savings, and can even make
things worse (see Chapter 7 [Deficiencies and Bugs], page 33).

Another area where the user can increase a scanner’s performance (and one that’s easier
to implement) arises from the fact that the longer the tokens matched, the faster the
scanner will run. This is because with long tokens the processing of most input characters
takes place in the (short) inner scanning loop, and does not often have to go through the
additional work of setting up the scanning environment (e.g., yytext) for the action. Recall
the scanner for C comments:

%x comment

%%

int line_num = 1;

"/*" BEGIN(comment);

<comment>[^*\n]*

<comment>"*"+[^*/\n]*

<comment>\n ++line_num;

<comment>"*"+"/" BEGIN(INITIAL);

This could be sped up by writing it as:

%x comment

%%

int line_num = 1;

"/*" BEGIN(comment);

<comment>[^*\n]*

<comment>[^*\n]*\n ++line_num;

<comment>"*"+[^*/\n]*

<comment>"*"+[^*/\n]*\n ++line_num;

<comment>"*"+"/" BEGIN(INITIAL);

Now instead of each newline requiring the processing of another action, recognizing the
newlines is “distributed” over the other rules to keep the matched text as long as possible.
Note that adding rules does not slow down the scanner! The speed of the scanner is
independent of the number of rules or (modulo the considerations given at the beginning of
this section) how complicated the rules are with regard to operators such as ‘*’ and ‘|’.

A final example in speeding up a scanner: suppose you want to scan through a file
containing identifiers and keywords, one per line and with no other extraneous characters,
and recognize all the keywords. A natural first approach is:

%%

asm |

auto |

24 Using flex

break |

. . . etc . . .
volatile |

while /* it’s a keyword */

.|\n /* it’s not a keyword */

To eliminate the back-tracking, introduce a catch-all rule:

%%

asm |

auto |

break |

. . . etc . . .
volatile |

while /* it’s a keyword */

[a-z]+ |

.|\n /* it’s not a keyword */

Now, if it’s guaranteed that there’s exactly one word per line, then we can reduce the
total number of matches by a half by merging in the recognition of newlines with that of
the other tokens:

%%

asm\n |

auto\n |

break\n |

. . . etc . . .
volatile\n |

while\n /* it’s a keyword */

[a-z]+\n |

.|\n /* it’s not a keyword */

One has to be careful here, as we have now reintroduced backtracking into the scanner.
In particular, while we know that there will never be any characters in the input stream
other than letters or newlines, flex can’t figure this out, and it will plan for possibly
needing backtracking when it has scanned a token like ‘auto’ and then the next character is
something other than a newline or a letter. Previously it would then just match the ‘auto’
rule and be done, but now it has no ‘auto’ rule, only a ‘auto\n’ rule. To eliminate the
possibility of backtracking, we could either duplicate all rules but without final newlines,
or, since we never expect to encounter such an input and therefore don’t how it’s classified,
we can introduce one more catch-all rule, this one which doesn’t include a newline:

%%

asm\n |

auto\n |

break\n |

. . . etc . . .
volatile\n |

Chapter 4: Performance Considerations 25

while\n /* it’s a keyword */

[a-z]+\n |

[a-z]+ |

.|\n /* it’s not a keyword */

Compiled with ‘-Cf’, this is about as fast as one can get a flex scanner to go for this
particular problem.

A final note: flex is slow when matching NUL’s, particularly when a token contains
multiple NUL’s. It’s best to write rules which match short amounts of text if it’s anticipated
that the text will often include NUL’s.

27

5 Incompatibilities with lex and posix

flex is a rewrite of the Unix tool lex (the two implementations do not share any code,
though), with some extensions and incompatibilities, both of which are of concern to those
who wish to write scanners acceptable to either implementation. At present, the posix lex

draft is very close to the original lex implementation, so some of these incompatibilities are
also in conflict with the posix draft. But the intent is that except as noted below, flex
as it presently stands will ultimately be posix conformant (i.e., that those areas of conflict
with the posix draft will be resolved in flex’s favor). Please bear in mind that all the
comments which follow are with regard to the posix draft standard of Summer 1989, and
not the final document (or subsequent drafts); they are included so flex users can be aware
of the standardization issues and those areas where flex may in the near future undergo
changes incompatible with its current definition.

flex is fully compatible with lex with the following exceptions:

• The undocumented lex scanner internal variable yylineno is not supported. It is
difficult to support this option efficiently, since it requires examining every character
scanned and reexamining the characters when the scanner backs up. Things get more
complicated when the end of buffer or file is reached or a NUL is scanned (since the
scan must then be restarted with the proper line number count), or the user uses the
yyless, unput, or REJECT actions, or the multiple input buffer functions.

The fix is to add rules which, upon seeing a newline, increment yylineno. This is
usually an easy process, though it can be a drag if some of the patterns can match
multiple newlines along with other characters.

yylineno is not part of the posix draft.

• The input routine is not redefinable, though it may be called to read characters fol-
lowing whatever has been matched by a rule. If input encounters an end-of-file the
normal yywrap processing is done. A “real” end-of-file is returned by input as EOF.

Input is instead controlled by redefining the YY_INPUT macro.

The flex restriction that input cannot be redefined is in accordance with the posix
draft, but YY_INPUT has not yet been accepted into the draft (and probably won’t; it
looks like the draft will simply not specify any way of controlling the scanner’s input
other than by making an initial assignment to yyin).

• flex scanners do not use stdio for input. Because of this, when writing an interactive
scanner one must explicitly call fflush on the stream associated with the terminal
after writing out a prompt. With lex such writes are automatically flushed since lex

scanners use getchar for their input. Also, when writing interactive scanners with
flex, the ‘-I’ flag must be used.

• flex scanners are not as reentrant as lex scanners. In particular, if you have an
interactive scanner and an interrupt handler which long-jumps out of the scanner, and
the scanner is subsequently called again, you may get the following message:

fatal flex scanner internal error--end of buffer missed

To reenter the scanner, first use

yyrestart(yyin);

28 Using flex

• output is not supported. Output from the ECHO macro is done to the file-pointer yyout
(default stdout).

The posix draft mentions that an output routine exists but currently gives no details
as to what it does.

• lex does not support exclusive start conditions (‘%x’), though they are in the current
posix draft.

• When definitions are expanded, flex encloses them in parentheses. With lex, the
following:

NAME [A-Z][A-Z0-9]*

%%

foo{NAME}? printf("Found it\n");

%%

will not match the string ‘foo’ because, when the macro is expanded, the rule is equiv-
alent to ‘foo[A-Z][A-Z0-9]*?’ and the precedence is such that the ‘?’ is associated
with ‘[A-Z0-9]*’. With flex, the rule will be expanded to ‘foo([A-Z][A-Z0-9]*)?’
and so the string ‘foo’ will match. Note that because of this, the ‘^’, ‘$’, ‘<s>’, ‘/’, and
‘<<EOF>>’ operators cannot be used in a flex definition.

The posix draft interpretation is the same as in flex.

• To specify a character class which matches anything but a left bracket (‘]’), in lex one
can use ‘[^]]’ but with flex one must use ‘[^\]]’. The latter works with lex, too.

• The lex ‘%r’ (generate a Ratfor scanner) option is not supported. It is not part of the
posix draft.

• If you are providing your own yywrap routine, you must include a ‘#undef yywrap’ in
the definitions section (section 1). Note that the ‘#undef’ will have to be enclosed in
‘%{}’.

The posix draft specifies that yywrap is a function, and this is very unlikely to change;
so flex users are warned that yywrap is likely to be changed to a function in the near
future.

• After a call to unput, yytext and yyleng are undefined until the next token is matched.
This is not the case with lex or the present posix draft.

• The precedence of the ‘{}’ (numeric range) operator is different. lex interprets
‘abc{1,3}’ as “match one, two, or three occurrences of ‘abc’,” whereas flex interprets
it as “match ‘ab’ followed by one, two, or three occurrences of ‘c’.” The latter is in
agreement with the current posix draft.

• The precedence of the ‘^’ operator is different. lex interprets ‘^foo|bar’ as “match
either ‘foo’ at the beginning of a line, or ‘bar’ anywhere”, whereas flex interprets it
as “match either ‘foo’ or ‘bar’ if they come at the beginning of a line”. The latter is
in agreement with the current posix draft.

• To refer to yytext outside of the scanner source file, the correct definition with flex

is ‘extern char *yytext’ rather than ‘extern char yytext[]’. This is contrary to
the current posix draft but a point on which flex will not be changing, as the array
representation entails a serious performance penalty. It is hoped that the posix draft
will be amended to support the flex variety of declaration (as this is a fairly painless
change to require of lex users).

Chapter 5: Incompatibilities with lex and posix 29

• yyin is initialized by lex to be stdin; flex, on the other hand, initializes yyin to NULL
and then assigns it to stdin the first time the scanner is called, providing yyin has not
already been assigned to a non-NULL value. The difference is subtle, but the net effect
is that with flex scanners, yyin does not have a valid value until the scanner has been
called.

• The special table-size declarations such as ‘%a’ supported by lex are not required by
flex scanners; flex ignores them.

• The name FLEX_SCANNER is #define’d so scanners may be written for use with either
flex or lex.

The following flex features are not included in lex or the posix draft standard:

yyterminate()

<<EOF>>

YY_DECL

#line directives
‘%{}’ around actions
yyrestart()

comments beginning with ‘#’ (deprecated)
multiple actions on a line

This last feature refers to the fact that with flex you can put multiple actions on the
same line, separated with semicolons, while with lex, the following

foo handle_foo(); ++num_foos_seen;

is (rather surprisingly) truncated to

foo handle_foo();

flex does not truncate the action. Actions that are not enclosed in braces are simply
terminated at the end of the line.

31

6 Diagnostic Messages

reject_used_but_not_detected undefined

yymore_used_but_not_detected undefined

These errors can occur at compile time. They indicate that the scanner uses
REJECT or yymore but that flex failed to notice the fact, meaning that flex
scanned the first two sections looking for occurrences of these actions and failed
to find any, but somehow you snuck some in (via a #include file, for example).
Make an explicit reference to the action in your flex input file. (Note that
previously flex supported a %used/%unused mechanism for dealing with this
problem; this feature is still supported but now deprecated, and will go away
soon unless the author hears from people who can argue compellingly that they
need it.)

flex scanner jammed

A scanner compiled with ‘-s’ has encountered an input string which wasn’t
matched by any of its rules.

flex input buffer overflowed

A scanner rule matched a string long enough to overflow the scanner’s internal
input buffer (16K bytes by default—controlled by YY_BUF_SIZE in flex.skel.
Note that to redefine this macro, you must first #undefine it).

scanner requires -8 flag

Your scanner specification includes recognizing 8-bit characters and you did
not specify the ‘-8’ flag (and your site has not installed flex with ‘-8’ as the
default).

fatal flex scanner internal error--end of buffer missed

This can occur in an scanner which is reentered after a long-jump has jumped
out (or over) the scanner’s activation frame. Before reentering the scanner, use:

yyrestart(yyin);

too many %t classes!

You managed to put every single character into its own %t class. flex requires
that at least one of the classes share characters.

33

7 Deficiencies and Bugs

Some trailing context patterns cannot be properly matched and generate warning messages
(‘Dangerous trailing context’). These are patterns where the ending of the first part
of the rule matches the beginning of the second part, such as ‘zx*/xy*’, where the ‘x*’
matches the ‘x’ at the beginning of the trailing context. (Note that the posix draft states
that the text matched by such patterns is undefined.)

For some trailing context rules, parts which are actually fixed-length are not recognized
as such, leading to the abovementioned performance loss. In particular, parts using ‘|’ or
{n} (such as ‘foo{3}’) are always considered variable-length.

Combining trailing context with the special ‘|’ action can result in fixed trailing context
being turned into the more expensive variable trailing context. For example, this happens
in the following example:

%%

abc |

xyz/def

Use of unput invalidates yytext and yyleng.

Use of unput to push back more text than was matched can result in the pushed-back
text matching a beginning-of-line (‘^’) rule even though it didn’t come at the beginning of
the line (though this is rare!).

Pattern-matching of NUL’s is substantially slower than matching other characters.

flex does not generate correct #line directives for code internal to the scanner; thus,
bugs in flex.skel yield bogus line numbers.

Due to both buffering of input and read-ahead, you cannot intermix calls to stdio.h

routines, such as, for example, getchar, with flex rules and expect it to work. Call input
instead.

The total table entries listed by the ‘-v’ flag excludes the number of table entries needed
to determine what rule has been matched. The number of entries is equal to the number of
DFA states if the scanner does not use REJECT, and somewhat greater than the number of
states if it does.

REJECT cannot be used with the ‘-f’ or ‘-F’ options.

Some of the macros, such as yywrap, may in the future become functions which live in
the -lfl library. This will doubtless break a lot of code, but may be required for posix
compliance.

The flex internal algorithms need documentation.

35

8 Contributors to flex

The author of flex is Vern Paxson, with the help of many ideas and much inspiration from
Van Jacobson. Original version by Jef Poskanzer. The fast table representation is a partial
implementation of a design done by Van Jacobson. The implementation was done by Kevin
Gong and Vern Paxson.

Thanks to the many flex beta-testers, feedbackers, and contributors, especially Casey
Leedom, benson@odi.com, Keith Bostic, Frederic Brehm, Nick Christopher, Jason Cough-
lin, Scott David Daniels, Leo Eskin, Chris Faylor, Eric Goldman, Eric Hughes, Jeffrey R.
Jones, Kevin B. Kenny, Ronald Lamprecht, Greg Lee, Craig Leres, Mohamed el Lozy, Jim
Meyering, Marc Nozell, Esmond Pitt, Jef Poskanzer, Jim Roskind, Dave Tallman, Frank
Whaley, Ken Yap, and those whose names have slipped my marginal mail-archiving skills
but whose contributions are appreciated all the same.

Thanks to Keith Bostic, John Gilmore, Craig Leres, Bob Mulcahy, Rich Salz, and
Richard Stallman for help with various distribution headaches.

Thanks to Esmond Pitt and Earle Horton for 8-bit character support; to Benson Mar-
gulies and Fred Burke for C++ support; to Ove Ewerlid for the basics of support for NUL’s;
and to Eric Hughes for the basics of support for multiple buffers.

Work is being done on extending flex to generate scanners in which the state machine is
directly represented in C code rather than tables. These scanners may well be substantially
faster than those generated using ‘-f’ or ‘-F’. If you are working in this area and are
interested in comparing notes and seeing whether redundant work can be avoided, contact
Ove Ewerlid (ewerlid@mizar.DoCS.UU.SE).

This work was primarily done when I was at the Real Time Systems Group at the
Lawrence Berkeley Laboratory in Berkeley, CA. Many thanks to all there for the support I
received.

Send comments to:

Vern Paxson
Computer Systems Engineering
Bldg. 46A, Room 1123
Lawrence Berkeley Laboratory
Berkeley, CA 94720

vern@ee.lbl.gov

i

Table of Contents

1 An Overview of flex, with Examples 1
1.1 Text-Substitution Scanner . 1
1.2 A Scanner to Count Lines and Characters . 1
1.3 Simplified Pascal-like Language Scanner . 2

2 Input and Output Files . 3
2.1 Format of the Input File . 3

2.1.1 Patterns in the Input . 4
2.1.2 How the Input is Matched . 6
2.1.3 Actions . 6

2.2 The Generated Scanner . 9
2.3 Start Conditions . 10
2.4 Multiple Input Buffers . 13
2.5 End-of-File Rules . 14
2.6 Miscellaneous Macros . 15
2.7 Interfacing with Parser Generators . 16
2.8 Translation Table . 16

3 Command-line Options . 17

4 Performance Considerations 21

5 Incompatibilities with lex and posix 27

6 Diagnostic Messages . 31

7 Deficiencies and Bugs . 33

8 Contributors to flex . 35

	1 An Overview of flex, with Examples
	Text-Substitution Scanner
	A Scanner to Count Lines and Characters
	Simplified Pascal-like Language Scanner

	2 Input and Output Files
	Format of the Input File
	Patterns in the Input
	How the Input is Matched
	Actions

	The Generated Scanner
	Start Conditions
	Multiple Input Buffers
	End-of-File Rules
	Miscellaneous Macros
	Interfacing with Parser Generators
	Translation Table

	3 Command-line Options
	4 Performance Considerations
	5 Incompatibilities with lex and posix
	6 Diagnostic Messages
	7 Deficiencies and Bugs
	8 Contributors to flex

